Закон кулона реферат по физике

Закон кулона реферат по физике – Помощь Адвоката

Закон кулона реферат по физике

В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов.

Таким образом, электрический заряд тела – дискретная величина: Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 4.1.1).

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием. Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Важно

Электрический заряд обычно обозначается буквами q или Q. Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы: Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела.

Закон кулона

Внимание

Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра электрические заряды одного знака распределяются по стержню и стрелке.

Силы электрического отталкивания вызывают поворот стрелки на некоторый угол по которому можно судить о заряде переданном стержню электрометра. 1 Рисунок 4.1.1. Перенос заряда с заряженного тела на электрометр. Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов.

Впервые закон взаимодействия неподвижных зарядов был установлен французским физиком Ш. Кулоном (1785 г.). В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис.

4.1.2) отличавшихся чрезвычайно высокой чувствительностью. Так например коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Реферат: электрический заряд. закон кулона

В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока. Данная закономерность была использована в так называемых крутильных весах.


Созданные весы позволили измерить ничтожно малые силы порядка 5·10-8 Н. Рис. 13 Крутильные весы (рис. 13, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см.

На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1.

Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется если размеры заряженных тел много меньше расстояния между ними.
Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).


Кулон – это заряд проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины времени и массы основной единицей измерения. Коэффициент k в системе СИ обычно записывают в виде: где – электрическая постоянная.

Опыт показывает что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Тогда или Ответ: – величина заряда, который надо поместить в четвертую вершину квадрата, чтобы заряд находился в равновесии, не зависит от длины стороны квадрата. Пример 2. Три маленьких невесомых шарика соединены невесомыми и нерастяжимыми нитями длиной см и см.

Шарикам сообщают одинаковые и одноименные заряды по 1 мкКл. Каковы после этого силы натяжения каждой из нитей? Рис.

4. Решение: Система трех заряженных тел связанных нитями, находится в см. см равновесии когда сумма сил, действующих на каждый заряд, равны нулю, т.е. — ? — ? Ответ: 1,25Н; 2,85Н. Пример 3.

Два точечных заряда, расположенные на расстоянии друг от друга взаимодействуют с силой . Их суммарный заряд . Каковы величины и этих зарядов? Решение: По закону Кулона . Откуда .

Решая это квадратное уравнение, получим -? -? Ответ: = 3,84·10-5Кл, = 1,16·10-5Кл. Пример 4.Точечные заряды 1 и 2 закреплены.

История открытия закона кулона

Заряд 3 может перемещаться (Рис.5). 1. с ускорением влево; 2. равномерно влево; 3. остается в покое; 4. равномерно вправо, 5. с ускорением вправо. Рис.5. Решение: Для выбора правильного ответа необходимо вычислить силу, действующую на третий заряд со стороны первого и второго зарядов.

Результирующая сила, действующая на третий заряд, будет . Как видно эта сила равна нулю. Следовательно третий заряд будет находится в покое.

Ответ: 3.

Скачать реферат по физике: электрический заряд. закон кулона

Сила, действующая на неподвижное то­чечное тело с электрическим зарядом в поле другого неподвижного точечного тела с элект­рическим зарядом, пропорциональна произве­дению значений их зарядов и обратно пропор­циональна квадрату расстояния между ними. В общем виде значение силы, о которой идет речь в формулировке закона Кулона, можно записать так: F = k • q1q2 / r2, В формуле для расчета силы взаимодей­ствия записаны значения зарядов обоих тел.

Поэтому можно сделать вывод, что по мо­дулю обе силы равны. Тем не менее, по направлению — они противоположные. В слу­чае если заряды тел одноименные, тела от­талкиваются (рис.
4.48).

Если заряды тел раз­ноименные, то тела притягиваются (рис. 4.49). Окончательно можно записать: F̅1 = -F̅2. Рис. 4.48. Силы взаимодействующих од­ноименно заряженных тел имеют про­тивоположные направления.

Рис. 4.49.

Электрический заряд. закон кулона

В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения. Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной: q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. С современной точки зрения, носителями зарядов являются элементарные частицы.

Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов.
Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну.

Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними.

Такие заряженные тела принято называть точечными зарядами. Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

2 Рисунок 4.1.2. Прибор Кулона. 3 Рисунок 4.1.3. Силы взаимодействия одноименных и разноименных зарядов.

Оба эффекта ведут к появлению экспоненциально убывающих членов порядкав выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.

Например, выражение для потенциала точечного заряда Q в системе СГС, с учётом радиационных поправок первого порядка принимает вид [14]: где λe — комптоновская длина волны электрона, — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где mw — масса W-бозона, в игру вступают уже электрослабые эффекты.

Источник: http://komps-help.ru/zakon-kulona-referat-po-fizike/

Закон Кулона

Закон кулона реферат по физике

    Введение
  • 1 Коэффициент k
  • 2 Закон Кулона в квантовой механике
  • 3 Закон Кулона с точки зрения квантовой электродинамики
  • 4 История
  • 5 Закон Кулона, принцип суперпозиции и уравнения Максвелла
  • 6 Cтепень точности закона Кулона
    • 6.1 Поправки к закону Кулона в квантовой электродинамике
    • 6.2 Закон Кулона и поляризация вакуума
    • 6.3 Закон Кулона и сверхтяжелые ядра
  • 7 Значение закона Кулона в истории науки
  • Примечания
    Литература

О законе сухого трения см.

Закон Амонтона – Кулона

Зако́н Куло́на — это закон о взаимодействии точечных электрических зарядов.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.[1]

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[2]

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где  — сила, с которой заряд 1 действует на заряд 2; q1,q2 — величина зарядов;  — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r12); k — коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые — притягиваются).

1. Коэффициент k

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k' равен единице.

В СИ = 8,9875517873681764×109 Н·м²/Кл² (или Ф−1·м) и записывается следующим образом:

где  ≈ 8,854187817×10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется диэлектрическая проницаемость среды ε.

В СГСЭ

В СИ

2. Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия.

В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.[3]

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

.

Здесь m – масса электрона, е – его заряд, rj – абсолютная величина радиус-вектора j-го электрона, rij = | rirj | .

Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое – потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое – потенциальную кулоновскую энергию взаимного отталкивания электронв.

Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.[4]

3. Закон Кулона с точки зрения квантовой электродинамики

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами.

Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения.

Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности.

При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона. [5][6]

4. История

Примерно за 11 лет до Кулона закон взаимодействия зарядов был открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д.К.Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.[7]

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

5. Закон Кулона, принцип суперпозиции и уравнения Максвелла

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики divD = 4πρ и rotE = 0.

То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей[8].

6. Cтепень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами.

Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2.

Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника [9].

Эксперименты, проведённые в 1971 г. в США Э.Р. Уильямсом, Д.Е. Фоллером и Г.А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до [10].

Для проверки точности закона Кулона на внутриатомных расстояниях У.Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9[11][12].

Коэффициент k в законе Кулона остается постоянным с точностью до 15×10−6[12].

6.1. Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.

86×10−13 м [13], где me — масса электрона,  — постоянная Планка, c — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда Q в системе СГС, с учётом радиационных поправок первого порядка принимает вид [14]:

где λe — комптоновская длина волны электрона,  — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где mw — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально [15].

6.2. Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона.

Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона ee является убывающей функцией расстояния ee = ee(r)[16].

Эффективный потенциал, создаваемый электроном с электрическим зарядом e, можно описать зависимостью вида ee(r) / r. Эффективный заряд ee(r) зависит от расстояния r по логарифмическому закону:

где,

– т. н. постоянная тонкой структуры α≈7.3×10−3;

 — т. н. классический радиус электрона re≈2.8×10−13 см. [17][18].

6.3. Закон Кулона и сверхтяжелые ядра

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом Z > 170 осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона[19]

7. Значение закона Кулона в истории науки

Закон Кулона является первым открытым количественным, сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука о электромагнетизме [20].

скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 10.07.11 23:25:10
Похожие рефераты: Закон Амонтона Кулона, Закон Кулона (механика), Закон Амонтона – Кулона, Закон есть закон (фильм), Закон 180, А-закон, A-закон, Закон.

Категории: Электростатика, Физические законы.

Текст доступен по лицензии Creative Commons Attribution-ShareA.

Источник: http://wreferat.baza-referat.ru/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%9A%D1%83%D0%BB%D0%BE%D0%BD%D0%B0

1. Определение

Электростатическая сила взаимодействия F 12 двух точечных неподвижных зарядов q 1 и q 2 ввакууме прямо пропорциональна произведению абсолютных значений зарядов и обратно пропорциональна квадрату расстояния r 12 между ними. ,

в векторной форме:

,

Сила взаимодействия направлена ​​вдоль прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные притягиваются. Силы, которые определяются законом Кулона аддитивные.

Коэффициент пропорциональности k называется электростатической постоянной и зависит от выбора единиц измерения. Так в Международной системе единиц СИ k = 1 / (4πε 0) ≈ 8,987742438 ? 10 9 Н ? м 2 ? Кл -2, где – электрическая постоянная. В системе СГС Г единица измерения заряда выбрана таким образом, что k = 1.

Такие условия являются необходимыми для выполнения сформулированного закона:

  1. Точковисть зарядов – расстояние между заряженными телами должно быть намного больше размеров тел.
  2. Недвижимость зарядов. В противном случае нужно учитывать магнитное поле заряда, что движется.

В однородном изотропном среде сила взаимодействия между зарядами уменьшается в ε раз: , Где ε диэлектрическая проницаемость среды.

2. История открытия

Догадки о том, что взаимодействие между електризованимы телами подчиняется тому же закону оберененои пропорциональности квадрату расстояния, и тяжести, неоднократно высказывались исследователями в середине 18 в.

В начале 1770-х ее экспериментально открыл Генри Кавендиш, однако своих результатов не опубликовал, и о них стало известно только в конце 19 в. после изучения и публикации его архивов. Шарль Кулон опубликовал закон 1785 году в двух мемуарах, представленных на рассмотрение Французской академии наук [2].

1835 Карл Гаусс опубликовал выведенную на основе закона Кулона, теорему Гаусса. В виде теоремы Гаусса закон Кулона входит в основных уравнений электродинамики.

3. Проверка закона

Для макроскопических расстояний при экспериментах в земных условиях, которые были проведены по методу Кавендиша, доказано что показатель степени r в законе Кулона не может отличаться от 2 более чем на 6.10 -16.

Из экспериментов с рассеяния альфа-частиц получается, что закон Кулона не нарушается до расстояний 10 -14 м. Но с другой стороны, для описания взаимодействия заряженных частиц на таких расстояниях понятия, с помощью которых формулируется закон (понятие силы, положения), теряют смысл.

В этой области пространственных масштабов действуют законы квантовой механики.

Закон Кулона можно считать одним из последствий квантовой электродинамики, в рамках которой взаимодействие заряженных частиц обусловлена ​​обменом виртуальными фотонами.

Вследствие этого, эксперименты по проверке выводов квантовой электродинамики считать опытами по проверке закона Кулона.

Так, эксперименты с аннигиляции электронов и позитронов свидетельствуют, что отклонение от законов квантовой электродинамики не наблюдаются до расстояний 10 -18 м.

См.. также

  • Теорема Гаусса
  • Сила Лоренца

Источники

  • Гончаренко С. В. Физика: Основные законы и формулы .. – К. : Лыбидь, 1996. – 47 с.
  • Кучерук И. М., Горбачук И. Т., Луцик П. П. Электричество и магнетизм / / Общий курс физики. – К. : Техника, 2006. – Т. 2. – 456 с.
  • Ф. С. Е., Тиморева А. В. Электрические и электромагнитные явления / / Курс общей физики. – К. : Просвещение, 1953. – Т. 2. – 496 с.
  • Физическая энциклопедия / Под ред. А. М. Прохорова. – М. : Советская энциклопедия, 1990. – Т. 2. – 703 с.
  • Сивухин Д. В. Электричество / / Общий курс физики. – М. : Физматлит, 2009. – Т. 3. – 656 с.

5. Сноски

  1. Закон Кулона можно приближенно применять и для движущихся зарядов, если их скорости намного меньше скорости света
  2. а б В – Coulomb (1785a) “Premier m?moire sur l'?lectricit? et le magn?tisme,” Histoire de l'Acad?mie Royale des Sciences, pages 569-577 – Кулон изучал силы отталкивания одноименных зарядов:

    Page 574: Il r?sulte donc de ces trois essais, que l'action r?pulsive que les deux balles ?lectrif?es de la m?me nature d'?lectricit? exercent l'une sur l'autre, suit la raison inverse du carr? des distances.

    Перевод: Так, из этих трех опытов следует, что сила отталкивания между двумя електризованимы пулями, зарядженмы электричеством одной природы, следует закону обратной пропорциональности квадрату расстояния ..

    В – Coulomb (1785b) “Second m?moire sur l'?lectricit? et le magn?tisme,” Histoire de l'Acad?mie Royale des Sciences, pages 578-611. – Кулон показал, что тела с противоположными зарядами притягиваются с силой оберенено-пропорциональной расстоянию.

Источник: http://nado.znate.ru/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%9A%D1%83%D0%BB%D0%BE%D0%BD%D0%B0

Реферат: Электрический заряд. Закон Кулона

Закон кулона реферат по физике

/ Рефераты / Физика

В 1785 году французский физик Шарль Огюст Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q1| и |q2|, то закон Кулона можно записать в следующей форме:

где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ Н·м2/Кл2, где ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/Н·м2

Формулировка закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, так как только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет.

Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними.

В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Подобные силы называют центральными. Если через обозначить силу действующую на первый заряд со стороны второго, а через – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, . Обозначим через радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

Если знаки зарядов q1 и q2 одинаковы, то направление силы совпадает с направлением вектора ; в противном случае векторы и направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях.

Возникла потребность дать им количественную интерпретацию.

Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Шарль Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10-8 Н.

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1.

Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11. В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце.

В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10). С помощью головки 1 это коромысло возвращалось в исходное положение.

По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α.

Сила же взаимодействия шариков была пропорциональна φ, то есть по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке).

Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально.

При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков:

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ. Затем поворотом головки 1 уменьшался этот угол до γ1.

Общий угол закручивания φ1 = α1 + (γγ1)(α1 – угол поворота головки). При уменьшении углового расстояния шариков до γ2 общий угол закручивания φ2 = α2 + (γγ2) . Было замечено, что, если γ1 = 2γ2, ТО φ2 = 4φ1, т. е.

при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным).

Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

Дата: 29.04.2015

Литература

1. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.: Дрофа, 2005. – 476 с.

2. Вольштейн С. Л. и др. Методы физической науки в школе: Пособие для учителя / С.Л. Вольштейн, С.В. Позойский, В.В. Усанов; Под ред. С.Л. Вольштейна. – Мн.: Нар. асвета, 1988. – 144 с.

Источник: http://www.referatmix.ru/referats/101/referatmix_90130.htm

Закон Кулона простыми словами

Закон кулона реферат по физике
В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними.

Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил.

В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле.

Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы.

Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия.

Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы.

Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна.

Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике.

Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н2*м2/Кл2. Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е0= 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором.

В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот.

Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования.

Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле.

Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода.

Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Источник: https://samelectrik.ru/zakon-kulona-prostymi-slovami.html

Адвокатская помощь
Добавить комментарий